资源类型

期刊论文 1790

会议视频 94

会议专题 1

年份

2024 1

2023 115

2022 186

2021 171

2020 117

2019 110

2018 110

2017 106

2016 87

2015 95

2014 77

2013 71

2012 50

2011 54

2010 67

2009 55

2008 56

2007 69

2006 54

2005 37

展开 ︾

关键词

能源 21

指标体系 12

智能制造 11

系统工程 10

可持续发展 8

开放的复杂巨系统 7

系统集成 7

钱学森 7

城镇建设 6

技术体系 6

环境 6

工程管理 5

电力系统 5

系统科学 5

2022全球十大工程成就 4

仿真 4

农业科学 4

医学 4

战略性新兴产业 4

展开 ︾

检索范围:

排序: 展示方式:

An integrated model for structure optimization and technology screening of urban wastewater systems

Yue HUANG,Xin DONG,Siyu ZENG,Jining CHEN

《环境科学与工程前沿(英文)》 2015年 第9卷 第6期   页码 1036-1048 doi: 10.1007/s11783-015-0792-z

摘要: The conventional approach to wastewater system design and planning considers each component separately and does not provide the optimum performance of the entire system. However, the growing concern for environmental protection, economic efficiency, and sustainability of urban wastewater systems requires an integrated modeling of subsystems and a synthetic evaluation of multiple objectives. In this study, a multi-objective optimization model of an integrated urban wastewater system was developed. The model encompasses subsystems, such as a sewer system, stormwater management, municipal wastewater treatment, and a wastewater reclamation system. The non-dominated sorting genetic algorithm (NSGA-II) was used to generate a range of system design possibilities to optimize conflicting environmental and economic objectives. Information from a knowledge base, which included rules for generating treatment trains as well as the performance characteristics of commonly used water pollution control measures, was utilized. The trade-off relationships between the objectives, total water pollution loads to the environment, and life cycle costs (which consist of investment as well as operation and maintenance costs), can be illustrated using Pareto charts. The developed model can be used to assist decision makers in the preliminary planning of system structure. A benchmark city was constructed to illustrate the methods of multi-objective controls, highlight cost-effective water pollution control measures, and identify the main pressures on urban water environment.

关键词: urban wastewater system     integrated modeling     multi-objective optimization     non-dominated sorting genetic algorithm (NSGA-II)    

Tracking in urban wastewater treatment plants in a cold region: Occurrence, species and infectivity

《环境科学与工程前沿(英文)》 2022年 第16卷 第9期 doi: 10.1007/s11783-022-1533-8

摘要:

Cryptosporidium in WWTPs in a cold region was investigated in different seasons.

关键词: WWTPs     Cryptosporidium     Occurrence     Species     Infectivity     Low temperature    

Sustainability of urban drainage management: a perspective on infrastructure resilience and thresholds

Xiong NING, Yi LIU, Jining CHEN, Xin DONG, Wangfeng LI, Bin LIANG

《环境科学与工程前沿(英文)》 2013年 第7卷 第5期   页码 658-668 doi: 10.1007/s11783-013-0546-8

摘要: Urban wastewater infrastructures have been threatened by natural and socioeconomic disturbances. This study investigates infrastructure resilience against the risks of long-term changes rather than natural disasters. Urban expansion that leads to an increased urban runoff and massive population movements that cause fluctuations in domestic emissions are considered in this study. Pollution permits for water bodies are adopted as constraints on wastewater infrastructures. A land use-based accounting method, combined with a grid-based database, is developed to map domestic discharge and urban runoff to service areas of wastewater treatment plants. The results of a case study on downtown Sanya, the most famous seashore tourist attraction in China, show that the average resilient values of three sub-catchment areas in 2010 were -0.57, 0.10 and 0.27, respectively, a significant spatial variation. The infrastructure in the Sanya River sub-region is the least flexible, and is more likely to fail due to unstable inflows. The resiliencies will increase to 0.59, 1.01 and 0.54, respectively, in 2020, a considerable improvement in robustness. The study suggests that infrastructure resilience needs to be taken into further consideration for urban planning and the related realm of urban governance to foster more robust wastewater management under various risks.

关键词: wastewater infrastructure     land use     environmental carrying capacity     fluctuating population     urban runoff    

Upgrading to urban water system 3.0 through sponge city construction

Nanqi Ren, Qian Wang, Qiuru Wang, Hong Huang, Xiuheng Wang

《环境科学与工程前沿(英文)》 2017年 第11卷 第4期 doi: 10.1007/s11783-017-0960-4

摘要: Urban water system 3.0 (Blue, gray, brown and yellow arrows represent water flow, wastewater flow, resource and energy respectively) Facing the pressure of excessive water consumption, high pollution load and rainstorm waterlogging, linear and centralized urban water system, system 2.0, as well as traditional governance measures gradually exposed characters of water-sensitivity, vulnerability and unsustainability, subsequently resulting in a full-blown crisis of water shortage, water pollution and waterlogging. To systematically relieve such crisis, we established healthy urban water-cycling system 3.0, in which decentralized sewerage systems, spongy infrastructures and ecological rivers play critical roles. Through unconventional water resource recycling, whole process control of pollutions and ecological restoration, system 3.0 with integrated management measures, is expected to fit for multiple purposes which involve environmental, ecological, economic and social benefits. With advantages of flexibility, resilience and sustainability, water system 3.0 will show an increasingly powerful vitality in the near future.

关键词: Water crisis     Urban water system     Spongy city     Decentralized system     Multi-purpose    

Substance flow analysis for an urban drainage system of a representative hypothetical city in China

Hua BAI, Siyu ZENG, Xin DONG, Jining CHEN

《环境科学与工程前沿(英文)》 2013年 第7卷 第5期   页码 746-755 doi: 10.1007/s11783-013-0551-y

摘要: This paper discusses the use of substance flow analysis (SFA) as a tool to support quantified research on urban drainage systems. Based on the principle of mass balance, a static substance flow model is established to describe and examine the routes and intensities of water, chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) for a representative hypothetical city (RH city) in China, which is a devised and scaled city using statistical characteristics of urban circumstances at the national level. It is estimated that the annual flux of water, COD, TN and TP through the urban drainage system in 2010 was 55.1 million m , 16037.3 t, 1649.5 t and 209.7 t, respectively. The effluent of wastewater treatment plant (WWTP) was identified as the most important pathway for pollutant emissions, which contributed approximately 60% of COD, 65% of TN and 50% of TP to receiving water. During the wastewater treatment process, 1.0 million m , 7042.5 t, 584.2 t and 161.4 t of the four studied substances had been transmitted into sludge, meanwhile 3813.0 t of COD and 394.0 t of TN were converted and emitted to the atmosphere. Compared with the representative hypothetical city of 2000, urban population and the area of urban built districts had expanded by approximately 90% and 80% respectively during the decade, resulting in a more than threefold increase in the input of substances into the urban drainage system. Thanks to the development of urban drainage systems, the total loads of the city were maintained at a similar level.

关键词: substance flow analysis (SFA)     urban drainage system     representative hypothetical city (RH city)     water pollution control    

Submerged arc plasma system combined with ozone oxidation for the treatment of wastewater containing

《环境科学与工程前沿(英文)》 2021年 第15卷 第5期 doi: 10.1007/s11783-020-1384-0

摘要:

• Submerged arc plasma was introduced in terms of wastewater treatment.

关键词: Thermal plasma     Submerged arc plasma     Wastewater     Ozone     Phenol     Highly energetic electron    

Sustainable design of sanitation system based on material and value flow analysis for urban slum in Indonesia

Ken USHIJIMA, Mitsuteru IRIE, Neni SINTAWARDANI, Jovita TRIASTUTI, Umi HAMIDAH, Tadaharu ISHIKAWA, Naoyuki FUNAMIZU

《环境科学与工程前沿(英文)》 2013年 第7卷 第1期   页码 120-126 doi: 10.1007/s11783-012-0460-5

摘要: Material flow analysis (MFA) and value flow analysis (VFA) were applied to the sanitation system in an urban slum in Indonesia. Based on the results of the MFA and VFA, garbage and excreta disposal costs were evaluated to be 0.7% and 1.1%, respectively, of per capita income. Such value flows seem reasonable in light of the recognized affordability to pay (ATP) standard. However, current excreta disposal methods create negative impacts on downstream populations. Because such disadvantages do not go back to disposers, but passed to downstream, the current value flow structure does not motivate individual toilet users to install treatment facility. Based on current material and value flow structures, a resource recycling sanitation system scenario was examined. Based on VFA, an affordable initial cost for such a system was calculated; this was found to be comparable in price to a cheaper composting toilet that is currently available in the market.

关键词: material flow     value flow     resource recycling system     sustainable design     initial cost     urban slum    

Water environment security indicator system for urban water management

Tian HAO, Pengfei DU, Yun GAO

《环境科学与工程前沿(英文)》 2012年 第6卷 第5期   页码 678-691 doi: 10.1007/s11783-012-0450-7

摘要: Water environment security (WES) is defined in terms of three aspects: first, that it meets basic demands due to industrial and domestic usage; second, that it protects public health from acute and chronic threats; and third, that measures are adopted to ensure sustainable ecological functioning of freshwater resources. Limitations associated with current water environment security indicators in China — including inefficiency in terms of environmental monitoring, inappropriate indicators and parameters that do not take sufficient account of local water characteristics, and a lack of management targets — leads to a failure of effective water management. To achieve better water environment management, a systematic approach, encompassing several steps including establish ideal indicator system and narrow down the scope, screen priority pollutants, identify local characteristics and organize discussion workshop, should be followed to establish a comprehensive water environment indicator system. A case study in Suzhou is included to demonstrate the detailed operational procedures used to assess the risks associated with poor management practices relating to water environment security as well as design an appropriate water environment security indicator system.

关键词: water environment security     supervision and management     monitoring parameter     indicator system     Suzhou    

Coupling analysis of passenger and train flows for a large-scale urban rail transit system

《工程管理前沿(英文)》 2023年 第10卷 第2期   页码 250-261 doi: 10.1007/s42524-021-0180-2

摘要: Coupling analysis of passenger and train flows is an important approach in evaluating and optimizing the operation efficiency of large-scale urban rail transit (URT) systems. This study proposes a passenger–train interaction simulation approach to determine the coupling relationship between passenger and train flows. On the bases of time-varying origin–destination demand, train timetable, and network topology, the proposed approach can restore passenger behaviors in URT systems. Upstream priority, queuing process with first-in-first-serve principle, and capacity constraints are considered in the proposed simulation mechanism. This approach can also obtain each passenger’s complete travel chain, which can be used to analyze (including but not limited to) various indicators discussed in this research to effectively support train schedule optimization and capacity evaluation for urban rail managers. Lastly, the proposed model and its potential application are demonstrated via numerical experiments using real-world data from the Beijing URT system (i.e., rail network with the world’s highest passenger ridership).

关键词: urban rail transit     coupling analysis     passenger–train interaction     large-scale simulation    

Reliability analysis of urban gas transmission and distribution system based on FMEA and correlation

Su LI,Weiguo ZHOU

《能源前沿(英文)》 2014年 第8卷 第4期   页码 443-448 doi: 10.1007/s11708-014-0336-4

摘要: In order to improve the safety management of urban gas transmission and distribution system, failure mode and effects analysis (FMEA) was used to construct the reliability analysis system of the pipeline network. To solve the problem of subjectivity and uncertainty of the multi-expert decision making, the correlation operator was introduced into the calculation of the risk priority number (RPN). Using FMEA along with weight analysis and expert investigation approach, the FMEA evaluation table was given, including five failure modes, risk priority numbers, failure causes and effects, as well as corrective actions. The results show that correlation operator can directly process the linguistic terms and quantify the priority of the risks.

关键词: gas transmission and distribution system     risk evaluation     reliability analysis     failure mode and effects analysis (FMEA)     correlation operator    

Occurrence and fate of antibiotics in advanced wastewater treatment facilities and receiving rivers in

Xinwei LI,Hanchang SHI,Kuixiao LI,Liang ZHANG,Yiping GAN

《环境科学与工程前沿(英文)》 2014年 第8卷 第6期   页码 888-894 doi: 10.1007/s11783-014-0735-0

摘要: The occurrence and removal of 13 antibiotics were investigated in five wastewater treatment plants (WWTPs) with advanced wastewater treatment processes in Beijing, China. Most of the target antibiotics were detected in the secondary and tertiary effluents, with the concentrations of 4.8–1106.0 and 0.3–505.0 ng·L . Fluoroquinolone antibiotics showed relatively high concentrations in all samples (782–1814 ng·L ). Different tertiary treatment processes showed discrepant antibiotics removal performances. Ozonation process was found more effective in removing target antibiotics compared to the coagulation-flocculation-sedimentation process and sand filtration process. Investigation of the target antibiotics in three typical urban rivers in Beijing was carried out to understand antibiotics occurrence in surface water environment. Eight antibiotics were detected in the studied rivers, with highest concentration of antibiotics in the river which was mainly replenished by reclaimed water. This study showed the necessity of employing more effective advanced treatment facilities to further reduce the discharge amount of antibiotics.

关键词: antibiotics     advanced treatment     urban river     reclaimed water    

Membrane bioreactors for hospital wastewater treatment: recent advancements in membranes and processes

《化学科学与工程前沿(英文)》 2022年 第16卷 第5期   页码 634-660 doi: 10.1007/s11705-021-2107-1

摘要: Discharged hospital wastewater contains various pathogenic microorganisms, antibiotic groups, toxic organic compounds, radioactive elements, and ionic pollutants. These contaminants harm the environment and human health causing the spread of disease. Thus, effective treatment of hospital wastewater is an urgent task for sustainable development. Membranes, with controllable porous and nonporous structures, have been rapidly developed for molecular separations. In particular, membrane bioreactor (MBR) technology demonstrated high removal efficiency toward organic compounds and low waste sludge production. To further enhance the separation efficiency and achieve material recovery from hospital waste streams, novel concepts of MBRs and their applications are rapidly evolved through hybridizing novel membranes (non hydrophilic ultrafiltration/microfiltration) into the MBR units (hybrid MBRs) or the MBR as a pretreatment step and integrating other membrane processes as subsequent secondary purification step (integrated MBR-membrane systems). However, there is a lack of reviews on the latest advancement in MBR technologies for hospital wastewater treatment, and analysis on its major challenges and future trends. This review started with an overview of main pollutants in common hospital wastewater, followed by an understanding on the key performance indicators/criteria in MBR membranes (i.e., solute selectivity) and processes (e.g., fouling). Then, an in-depth analysis was provided into the recent development of hybrid MBR and integrated MBR-membrane system concepts, and applications correlated with wastewater sources, with a particular focus on hospital wastewaters. It is anticipated that this review will shed light on the knowledge gaps in the field, highlighting the potential contribution of hybrid MBRs and integrated MBR-membrane systems toward global epidemic prevention.

关键词: membrane technology     membrane bioreactor     hospital wastewater     hybrid MBR     integrated MBR-membrane system    

Dynamic simulation of urban water metabolism under water environmental carrying capacity restrictions

Weihua ZENG,Bo WU,Ying CHAI

《环境科学与工程前沿(英文)》 2016年 第10卷 第1期   页码 114-128 doi: 10.1007/s11783-014-0669-6

摘要: A revised concept for urban water metabolism (UWM) is presented in this study to address the inadequacies in current research on UWM and the problems associated with the traditional urban water metabolic process. Feedback loops can be analyzed to increase the water environmental carrying capacity (WECC) of the new urban water metabolism system (UWMS) over that of a traditional UWMS. An analysis of the feedback loops of an UWMS was used to construct a system dynamics (SD) model for the system under a WECC restriction. Water metabolic processes were simulated for different scenarios using the Tongzhou District in Beijing as an example. The results for the newly developed UWM case showed that a water environment of Tongzhou District could support a population of 1.1926 × 10 , an irrigation area of 375.521 km , a livestock of 0.7732 × 10 , and an industrial value added of ¥193.14 × 10 (i.e. about US$28.285× 10 ) in 2020. A sensitivity analysis showed that the WECC could be improved to some extent by constructing new sewage treatment facilities or by expanding the current sewage treatment facilities, using reclaimed water and improving the water circulation system.

关键词: urban water metabolism system (UWMS)     system dynamic simulation     water environmental carrying capacity (WECC)     feedback loops     bilateral control    

Presence, dissemination and removal of antibiotic resistant bacteria and antibiotic resistance genes in urbandrinking water system: A review

Qiaowen Tan, Weiying Li, Junpeng Zhang, Wei Zhou, Jiping Chen, Yue Li, Jie Ma

《环境科学与工程前沿(英文)》 2019年 第13卷 第3期 doi: 10.1007/s11783-019-1120-9

摘要:

Reviewed the change of ARGs and ARB in full-scale urban drinking water systems.

Conventional processes are more promising than BAC process in ARGs removal.

Mechanisms of ARGs enrichment and spread in BAC filter and DWDSs are discussed.

Raise the need of future research on ARGs and ARB change in building plumbing systems.

关键词: Antibiotic resistant bacteria     Antibiotic resistance genes     Water source     Drinking water treatment plant     Drinking water distribution system     Urban drinking water system    

Optimization of phosphorus removal in uniFed SBR system for domestic wastewater treatment

Xuguang TANG, Shuying WANG, Yongzhen PENG

《环境科学与工程前沿(英文)》 2010年 第4卷 第4期   页码 475-481 doi: 10.1007/s11783-010-0244-8

摘要: The characteristic of phosphorus removal and appropriate change of the traditional operation modes were investigated in UniFed sequencing batch reactor (SBR) laboratory-scale apparatus (40 L), treating actual domestic wastewater with low ratios of C/N (2.57) and C/P (30.18), providing theoretical basis for actual application of wastewater treatment plant. UniFed SBR system with its unique operation mode had the distinct superiority of phosphorus removal. On this occasion, the effect of volumetric exchange ratio (VER) and the method of influent introduction for phosphorus removal were studied. When the carbon source became the limiting factor to phosphorus release, the higher the VER, the lower the phosphorus concentration in the effluent. Three different influent patterns, including one-time filling, four-time filling, and continuous filling with the same quantity of wastewater could increase the release rate of anaerobic phosphorus from 0.082 to 0.143 mg·P·(L·min) . Appropriate change of the traditional operation modes could optimize the efficiency of phosphorus removal. When the feed/ decant time was extended from 2 h to 4 h, the phosphorous removal efficiency increased from 59.93% to 88.45% without any external carbon source. In the mode of alternation of anoxic-aerobic (A/O) condition, phosphorous removal efficiency increased from 55.07% to 72.27% clearly. The carbon source in the influent can be used adequately, and denitrifying phosphorus removal was carried out in anoxic stage 2 (A2). This mode was optimal for the treatment of actual domestic wastewater with low C/N and C/P ratios.

关键词: UniFed sequencing batch reactor (SBR)     phosphorus removal     volumetric exchange ratio (VER)     alternation of anoxic-aerobic (A/O)     domestic wastewater    

标题 作者 时间 类型 操作

An integrated model for structure optimization and technology screening of urban wastewater systems

Yue HUANG,Xin DONG,Siyu ZENG,Jining CHEN

期刊论文

Tracking in urban wastewater treatment plants in a cold region: Occurrence, species and infectivity

期刊论文

Sustainability of urban drainage management: a perspective on infrastructure resilience and thresholds

Xiong NING, Yi LIU, Jining CHEN, Xin DONG, Wangfeng LI, Bin LIANG

期刊论文

Upgrading to urban water system 3.0 through sponge city construction

Nanqi Ren, Qian Wang, Qiuru Wang, Hong Huang, Xiuheng Wang

期刊论文

Substance flow analysis for an urban drainage system of a representative hypothetical city in China

Hua BAI, Siyu ZENG, Xin DONG, Jining CHEN

期刊论文

Submerged arc plasma system combined with ozone oxidation for the treatment of wastewater containing

期刊论文

Sustainable design of sanitation system based on material and value flow analysis for urban slum in Indonesia

Ken USHIJIMA, Mitsuteru IRIE, Neni SINTAWARDANI, Jovita TRIASTUTI, Umi HAMIDAH, Tadaharu ISHIKAWA, Naoyuki FUNAMIZU

期刊论文

Water environment security indicator system for urban water management

Tian HAO, Pengfei DU, Yun GAO

期刊论文

Coupling analysis of passenger and train flows for a large-scale urban rail transit system

期刊论文

Reliability analysis of urban gas transmission and distribution system based on FMEA and correlation

Su LI,Weiguo ZHOU

期刊论文

Occurrence and fate of antibiotics in advanced wastewater treatment facilities and receiving rivers in

Xinwei LI,Hanchang SHI,Kuixiao LI,Liang ZHANG,Yiping GAN

期刊论文

Membrane bioreactors for hospital wastewater treatment: recent advancements in membranes and processes

期刊论文

Dynamic simulation of urban water metabolism under water environmental carrying capacity restrictions

Weihua ZENG,Bo WU,Ying CHAI

期刊论文

Presence, dissemination and removal of antibiotic resistant bacteria and antibiotic resistance genes in urbandrinking water system: A review

Qiaowen Tan, Weiying Li, Junpeng Zhang, Wei Zhou, Jiping Chen, Yue Li, Jie Ma

期刊论文

Optimization of phosphorus removal in uniFed SBR system for domestic wastewater treatment

Xuguang TANG, Shuying WANG, Yongzhen PENG

期刊论文